A penalty/least-squares method for optimal control problems for first-order elliptic systems
نویسندگان
چکیده
A penalty/least-squares method for optimal control problems for ®rst-order elliptic systems is considered wherein the constraint equations are enforced via penalization. The convergence, as the penalty parameter tends to zero, of the solution to the penalized optimal control problem to that of the unpenalized one is demonstrated as is the convergence of a gradient method for determining solutions of the penalized optimal control problem. Finally, ®nite element approximations of the penalized optimal control problem are studied and optimal error estimates are obtained. Ó 2000 Elsevier Science Inc. All rights reserved.
منابع مشابه
Optimal Pareto Parametric Analysis of Two Dimensional Steady-State Heat Conduction Problems by MLPG Method
Numerical solutions obtained by the Meshless Local Petrov-Galerkin (MLPG) method are presented for two dimensional steady-state heat conduction problems. The MLPG method is a truly meshless approach, and neither the nodal connectivity nor the background mesh is required for solving the initial-boundary-value problem. The penalty method is adopted to efficiently enforce the essential boundary co...
متن کاملAnalysis and approximation of optimal control problems for first-order elliptic systems in three dimensions
We examine analytical and numerical aspects of optimal control problems for firstorder elliptic systems in three dimensions. The particular setting we use is that of divcurl systems. After formulating some optimization problems, we prove the existence and uniqueness of the optimal solution. We then demonstrate the existence of Lagrange multipliers and derive an optimality system of partial diff...
متن کاملOn Least-squares Variational Principles for the Discretization of Optimization and Control Problems
The approximate solution of optimization and control problems for systems governed by linear, elliptic partial differential equations is considered. Such problems are most often solved using methods based on the application of the Lagrange multiplier rule followed by discretization through, e.g., a Galerkin finite element method. As an alternative, we show how least-squares finite element metho...
متن کاملSuperlinearly convergent exact penalty projected structured Hessian updating schemes for constrained nonlinear least squares: asymptotic analysis
We present a structured algorithm for solving constrained nonlinear least squares problems, and establish its local two-step Q-superlinear convergence. The approach is based on an adaptive structured scheme due to Mahdavi-Amiri and Bartels of the exact penalty method of Coleman and Conn for nonlinearly constrained optimization problems. The structured adaptation also makes use of the ideas of N...
متن کاملFirst-order System Least- Squares for Second-order Partial Diierential Equations: Part Ii. Siam J
analysis of iterative substructuring algorithms for elliptic problems in three dimensions. Least-squares mixed-nite elements for second-order elliptic problems. A least-squares approach based on a discrete minus one inner product for rst order systems. Technical report, Brookhaven National Laboratory, 1994. 4] J. H. Bramble and J. E. Pasciak. Least-squares methods for Stokes equations based on ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Mathematics and Computation
دوره 107 شماره
صفحات -
تاریخ انتشار 2000